

压力传感器

ZP581LD 系列

产品特点

- 小型化、MEMS 技术
- 自主知识产权芯片设计
- 可定制量程±100kPa~±700kPa
- 高速 SPI 接口
- 高精度压力测量
- 温度范围宽-40℃~125℃
- 适用无腐蚀性气体
- 表面贴装 LGA 封装

产品用途

- 汽车电子:汽车座椅气囊等
- 数字胎压计、数字充气泵、真空系统、气动控制系统等
- 工业设备
- 高度计、气象站、导航
- 灭火器等智慧消防系统

产品说明

ZP581LD 系列压力传感器是一款集成数字式压力传感器,具有小型化、高精度、灵敏度高、可靠性高等特点。

ZP581LD 系列传感器内部集成压力传感器 MEMS 芯片与信号调理芯片,对传感器的零点、灵敏度、温漂和非线性进行数字补偿,输出一个经过校准、温度补偿的标准数字信号。 ZP581LD 系列传感器采用 LGA-8 封装,符合 RoHS 标准,方便客户焊接安装和使用。主要用于汽车座椅气囊等汽车电子应用、工业和消费电子应用。

订购信息

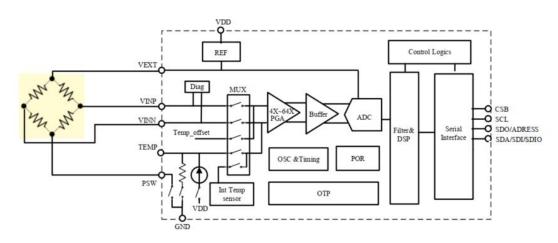
_{\K\4\	+A 111 L# _L	压力量	程KPa	数字リ	3一化	传递函	数系数
订货料号	輸出模式	P_L	P _H	OL	O _H	Α	В
ZP581LD165KA133	SPI数字	60.00	165.00	0.10	0.90	131.2500	46.8750

最大额定参数

参数	符号	最小	典型	最大	单位	备注
VDD电压	VDD_{max}	-0. 3		6. 5	٧	
数字引脚电压		-0.3		VDD+0. 3	٧	
过载压力	P _{proof}		ЗХ		F. S	
爆破压力	P _{burst}		5X		F. S	
ESD防护	HBM		4		kV	
存储温度	T _{stg}	-40		130	°C	

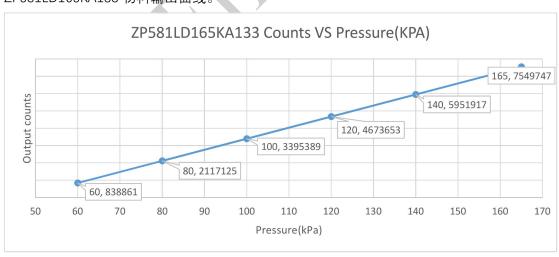
推荐工作条件

参数	符号	最小	典型	最大	单位	备注
供电电压 VDD		3	3. 3	3. 6	٧	VDD=3. 3V
供电电压	V UU	4. 5	5	5. 5	٧	VDD=5. OV
工作压力	P_{amb}	60		165	kPa	
工作温度	T_{opr}	-40		125	Ç	


电气参数

参数	符号	最小	典型	最大	单位	备注
工作电流	l avdd		1.5		mA	
工厂电池	I standby			100	nA	
ADC分辨率	N		24		Bits	
ADC转换时间	T _{ss}	1. 54		42. 18	Ms	
电源抑制比	PSRR		60		dB	
SCL/SDA上拉电阻	R_{p}		4. 7		k0hm	
补偿温度范围	T _{COMP}	0		85	°C	
综合精度	ACC		1.0%		%FS	0°C−85°C

概述

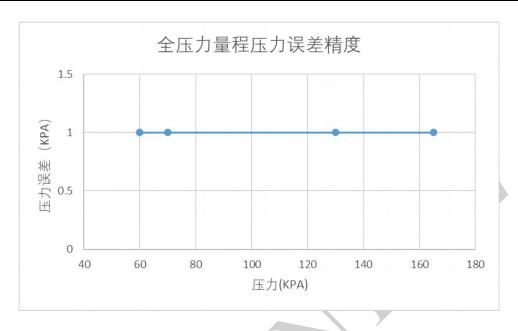

ZP581LD 系列压力传感器内部集成 MEMS 压力芯体与信号调理芯片,通过 24 位 ADC 对传感器的零点、灵敏度、温漂和非线性进行数字补偿,输出一个与施加压力呈线性的信号,校准后数字信号可通过高速 SPI 接口进行访问。

系统功能框图

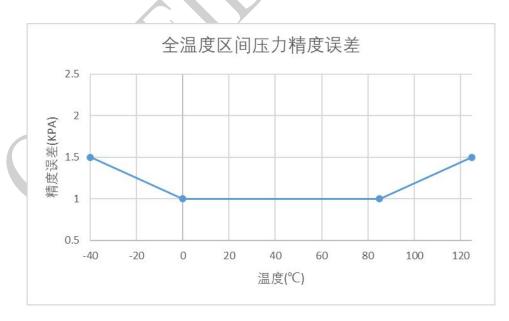
数字输出特性曲线

ZP581LD 系列压力传感器在规定的 Pmin 至 Pmax 压力范围内进行校准,下图给出 ZP581LD165KA133 物料输出曲线。

使用如下等式,可将数字输出寄存器值转化为压力值:


 $P = A \times code + B$

其中code为数据寄存器归一化值 PDATA/8388608; P 为实际压力值, 单位为 KPA;


\T48.4\\ \	+A-11-1#E	压力量	程KPa	数字リ	3一化	传递函	数系数
订货料号	輸出模式	P _L	P _H	O _L	O _H	Α	В
ZP581LD165KA133	SPI数字	60.00	165.00	0.10	0.90	131.2500	46.8750

输出精度

0℃-85℃温度区间全压力量程压力输出精度误差

-40℃-125℃全温域压力输出精度误差

寄存器描述

地址	位地址	寄存器名称	默认值	描述
0×00	7, 0	SDO_active	1'ь0	1: 4-wire SPI, 0: 3-wire SPI
UXUU	6, 1	LSB_first	1' b0	1: LSB first for SPI interface, O: MSB first for SPI interface
0×02	0	DRDY	1' b0	data is ready for reading
	7 - 4	Reserve	4' ь0000	
0×30	3	Sco	1' b0	1:开始数据采集,采集结束时自动回0
	2 - 0	Measurement_ctrl<2:0>	3' ь000	000b: 单次温度采集模式; 001b: 单次压力信号采集模式; 010b: 组合采集模式(一次温度采集后立即进行一次压力信号采集)
0×06	7 - 0	PDATA<23:16>	0×00	有符号数,存储经过校准的压力数据 若最高位为0,
0x07	7 - 0	PDATA<15:8>	0×00	石坂同区/790, Pdata = PData _{0x00} *65536+ PData _{0x07} *256+ PData _{0x08} ; 若最高位为1.
0×08	7 - 0	PDATA<7:0>	0×00	日成同区プリ, Pdata = PData _{0x06} *65536+ PData _{0x07} *256+ PData _{0x08} -16777216;
0×09	7 - 0	TDATA<15:8>	0×00	有符号数,存储经过校准的温度数据 若最高位为0, Tdata = TData _{0x07} *256+ TData _{0x08} ;
0×0A	7 - 0	TDATA<7:0>	0×00	Tidata - Tidata _{0x07} *256+ Tidata _{0x08} ; 若最高位为1, Tidata = Tidata _{0x07} *256+ Tidata _{0x08} - 65536;

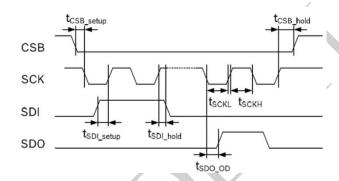
测量压力值转换示例:

ZP581LD165KA133:

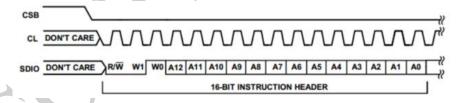
- 当 0x06、0x07、0x08 寄存器的值分别为 0x4C,0x30,0XC3,Pdata = 76*65536+48*256+195 = 4993219,得到压力值 P(KPA) = 131.25* Pdata / 8388608 + 46.875= 125KPA。
- 当 0x09、0x0A 寄存器的值分别为 0x19,0x80, Tdata = 25*256+128 = 6528, 得到温度值 T(℃) = Tdata / 256 = 25.5℃。

数据读取

- 1. 配置 4 线 SPI, 0x00 寄存器写入 0x81。
- 2. 配置采集压力和温度信号过采样率, 0xA6 寄存器 OSR_P<2:0>表示压力信号过采样率, 0xA7 寄存器 OSR_T<2:0>表示温度信号过采样率; 过采样率配置选项包括: 100:256X, 101:512X, 000:1024X, 001:2048X, 010:4096X, 011:8192X, 110:16384X, 111:32768X;
- 3. 发送指令 0x0A 到 0x30 寄存器进行一次温度采集,一次压力数据采集。
- 4. 读取 0x30 寄存器地址, 若 Sco 位为 0 代表采集结束, 可以读取数据。 或等待 延迟 10ms。
- 5. 读取 0x06、0x07、0x08 三个寄存器地址数据构成 24 位 AD 值(压力数据 AD 值)。 将读取到的 24 位 AD 值按照传递函数特性计算最终压力输出: $P(KPA) = A \times code + B$ 。



SPI 接口协议


SPI 接口规范

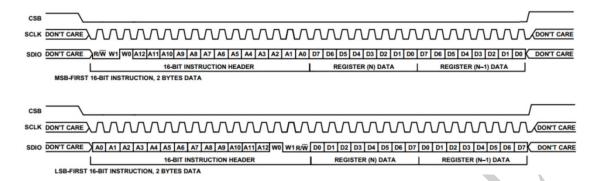
参数	标示	最小值	典型值	最大值	单位	条件
时钟频率	f _{sclk}	-	-	10	MHz	Max load on SDIO or SDO = 25pF
时钟低脉冲维持时间	T _{sclk_l}	20	-	-	ns	
时钟高脉冲维持时间	T _{sclk_h}	20	-	-	ns	
SDI建立时间	t _{sdi_setup}	20	-	-	ns	
SDI保持时间	t _{sdi_hold}	20	-	-	ns	
SDO/SDI输出延时	_	30	-	-	ns	Load = 25 pF
300/301制山延町	t _{sdo_od}	40	-	-	ns	Load = 250 pF
CSB建立时间	t _{csb_setup}	20	-	-	ns	
CSB保持时间	t _{csb_hold}	20	_	_	ns	

SPI 时序定义

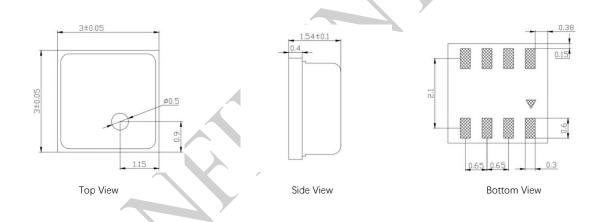
采样起始由 CSB 的下降沿和 SCLK 的上升沿共同决定。数据传输的第一个阶段是命令阶段, 其由 16 个 BIT 位构成。如果设备 CSB 引脚被拉低,采样从 SCLK 的第一个上升沿开始。 命令阶段 16 个 BIT 位完成传输。如下图所示,指令阶段被划分成若干位域。

指令阶段第一个 BIT 位(R/W)是读写标志位。当该 bit 被拉高,表示请求读操作,反之则表示请求写操作。

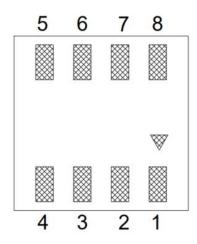
W1,W0 代表被传输的(读或写)字节数量。如果传输字节少于 4 个字节,那么 CSB 可以在每个字节临界停置高电平。在非字节临界置高将终止通讯。如果传输字节不少于 4 个字节, CSB 引脚必须保持低电平直到传输结束,否则通讯终止。下图给出 W1 和 W0 的配置,


W1:W0	Action	CSB stalling
00	1 byte of data can be transferred.	Optional
01	2 bytes of data can be transferred.	Optional
10	3 bytes of data can be transferred.	Optional
11	4 or more bytes of data can be transferred. CSB must be held low for entire sequence; otherwise, the cycle is terminated.	No

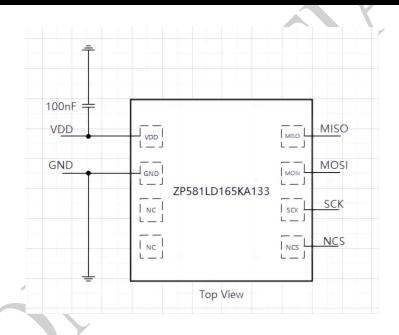
数据传输在完成命令阶段后开始, 传输数据数量由字长(W1、W0)决定。每个传输数据由



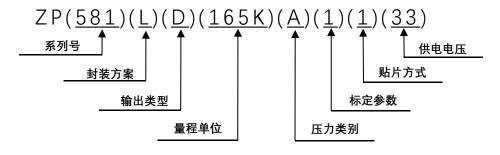
8bit 字组成。


数据从高位发送还是低位发送由'LSB_first'位设置。上电默认高位发送。如下图所示 MSB-first 和 LSB-first 模式下时序图,

外形尺寸图


引脚定义

Pin	Name	I/O Type	Description
1	VDD	Supply	电源
2	GND	GND	地
3	NC	NC	
4	NC	NC	
5	NCS	Input	SPI 接口选择
6	SCK	Input	SPI 时钟
7	MOSI	Input	SPI 主设备数据输出,从设备数据输入
8	MISO	Ouput	SPI 主设备数据输入,从设备数据输出


应用电路

订购信息

	\T48.4\\ \	+A 11 1#+-1	压力量	程KPa	数字リ	3一化	传递函	数系数	T/6#151
	订货料号	输出模式	P_L	P _H	O _L	O _H	Α	В	工作电压V
- 1	ZP581LD165KA133	SPI数字	60.00	165.00	0.10	0.90	131.2500	46.8750	3.3V

命名惯例:

产品包装

■ 编带包装

产品采用防潮、防机械损坏和防静电保护,以卷带包装出货。每个包装盒上使用条形码标有可追溯性信息(部件号,数量,日期代码,批号)。

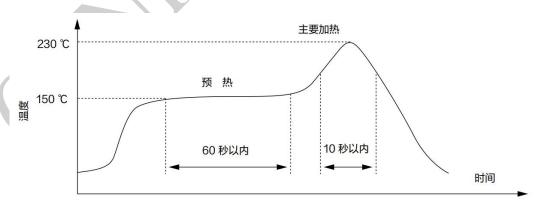
产品以压力气孔朝卷带外侧(远离卷带中心)方向排列。

■ 具体包装出货形式,详情请与本公司商洽。

使用注意事项

■ 安装

请使用印刷板焊盘, 以使产品能够充分地固定


■ 焊接

由于本传感器为热容量较小的小型构造,因此请尽量减少来自外部的热量的影响。否则可能会因热变形而造成破损,影响特性,并请使用非腐蚀性的松香型助焊剂,并注意不要让助焊剂进入内部

1) 烙铁焊接

- ◆ 请使用温度在 260~300 ℃的电烙铁在 5 秒内完成作业。
- ◆ 在引脚上进行焊接的情况后,应放置一段时间后再使用。
- ◆ 勤清洗电烙铁头,保持干净
- 2) 回流焊焊接

回流焊焊接方式推荐设置条件如下:

- 3) 在引脚上施加过度的力,会引发变形,损害焊接性,因此请避免使传感器掉落,或进行繁杂的使用。
- 4) 尽量保持 PCB 板的翘度相对于整个传感器在 0.05mm 以下。

更新记录

版本	更新内容	更新日期
1.0	正式发布	2023.06.08
1.1	更新应用场景	2023.09.02
1.2	修正产品系列命名方式	2023.12.15

联系方式

	苏州知芯传感技术有限公司
地址	苏州市工业园区凤里街 345 号 3 座 C 栋 2 楼 202 室
电话	
网站	
邮箱	admin@chipsens.com