

# CC6201

# 全极型微功耗霍尔效应开关

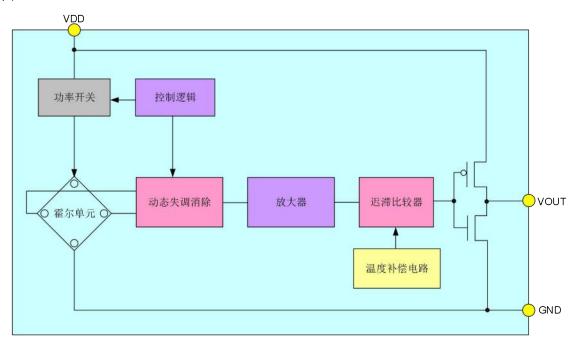
#### 概述

CC6201是一颗微功耗、高灵敏度、全极性、并具有闩锁输出的霍尔开关传感器,可直接取代传统的磁簧开关。特别适用于使用电池供电的便携式电子产品,如行动电话、无绳电话、笔记型电脑、PDA等。

CC6201具有磁场辨别全极性,只要磁场北极或南极靠近即可启动,磁场撤消后,输出便关闭。与一般的霍尔传感器不同的是,CC6201 并不要特定南极或北极才可以动作,减少了组装时辨别磁极的困扰。产品采用了动态失调消除技术,该技术能够消除由封装应力,热应力,以 及温度梯度所造成的失调电压,提高器件的一致性。

CC6201内部电路包含了霍尔薄片、电压稳压模块、信号放大处理模块、动态失调消除模块、锁存模块以及CMOS输出级。由于CC6201使用先进的BiCMOS工艺,整体优化了的线路结构,使得产品具有极低的输入误差反馈。同时该产品采用及其小型化的封装工艺,使得产品更具极高的性能和市场优势。

CC6201提供SOT23-3和TO-92S两种封装,工作温度范围为-40~150°C。

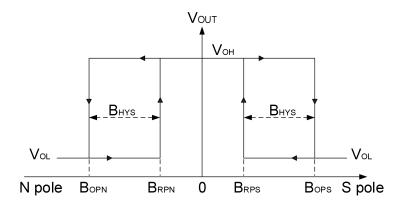

### 特性

- ◆ 工作电压范围宽: 2~5V
- ◆ 功耗极低: 典型值3uA
- ◆ 反应速度快,工作频率为45Hz
- ◆ 全极性输出,对南极和北极磁场均可响应
- ◆ 良好的温度稳定性
- ◆ 开关点漂移低
- ◆ ESD (HBM) 6kV
- ◆ SOT23-3和TO-92S封装

#### 应用

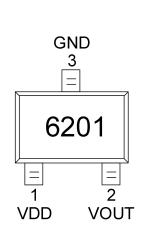
- ◆ 仪器仪表
- ◆ PDA
- ◆ 笔记本电脑

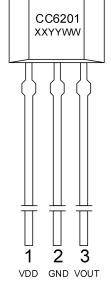
#### 功能框图






## 订购信息


| 产品名称     | 封装外形    | 包装          |
|----------|---------|-------------|
| CC6201TO | TO-92S  | 袋装,1000 片/包 |
| CC6201ST | SOT23-3 | 卷盘,3000 片/卷 |


## 开关输出 vs. 磁场极性



注意: 磁场加在芯片的丝印面

## 管脚定义





SOT23-3 封装

TO-92S 封装

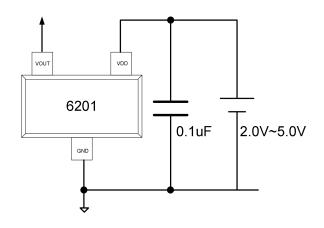
| 名称         | 管脚编号   |         | 功能         |  |
|------------|--------|---------|------------|--|
| <b>石</b> 柳 | TO-92S | SOT23-3 | <b>少</b> 胞 |  |
| VDD        | 1      | 1       | 电源电压       |  |
| GND        | 2      | 3       | 地          |  |
| VOUT       | 3      | 2       | 输出         |  |



## 极限参数

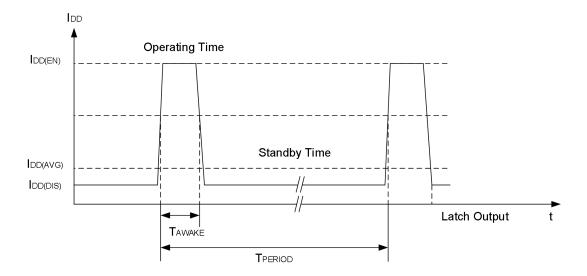
| 参数        | 符号       | 数值       | 单位 |
|-----------|----------|----------|----|
| 电源电压      | $V_{DD}$ | -0.3~5.5 | V  |
| 磁场强度      | В        | 无限制      | Gs |
| 工作环境温度    | Ta       | -40~150  | °C |
| 存储环境温度    | Ts       | -50~160  | °C |
| ESD (HBM) |          | 6        | kV |

注意: 应用时不要超过最大额定值,以防止损坏。长时间工作在最大额定值的情况下可能影响器件的可靠性。


# 电气参数 (若无特别指明, V<sub>DD</sub>=3.5V @ T<sub>a</sub>=25°C)

| 参数     | 符号                       | 条件                            | 最小值                  | 典型值 | 最大值 | 单位 |
|--------|--------------------------|-------------------------------|----------------------|-----|-----|----|
| 电源电压   | V <sub>DD</sub>          | -                             | 2                    | 5   | 5.5 | V  |
| 输出高电平  | VoH                      | Iout(source)=0.5mA            | V <sub>DD</sub> -0.2 | -   | -   |    |
| 输出低电平  | VoL                      | I <sub>OUT(SINK)</sub> =0.5mA | -                    | -   | 0.2 |    |
| 平均静态电流 | I <sub>DD(AVG)</sub>     | VOUT 引脚悬空                     | -                    | 3   | -   | uA |
| 开启状态电流 | I <sub>DD(EN)</sub>      |                               | -                    | 0.7 | -   | mA |
| 关断状态电流 | I <sub>DD(DIS)</sub>     |                               | -                    | 1.6 | -   | uA |
| 输出拉电流  | I <sub>OUT(SOURCE)</sub> |                               | -                    | -   | 0.5 | mA |
| 输出灌电流  | I <sub>OUT(SINK)</sub>   |                               | -                    | -   | 0.5 | mA |
| 启动时间   | T <sub>AWAKE</sub>       |                               | -                    | 50  | 100 | us |
| 扫描周期   | T <sub>PERIOD</sub>      |                               | -                    | 22  | -   | ms |
| 占空比    | D.C.                     |                               | -                    | 0.2 | -   | %  |

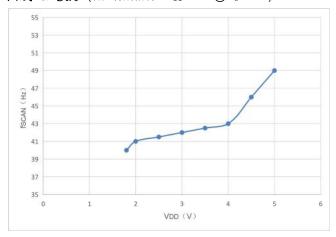
## 磁参数 (磁场以南极施加于芯片丝印面为正)


| 参数    | 符号               | 条件                                           | 最小值 | 典型值 | 最大值 | 单位 |
|-------|------------------|----------------------------------------------|-----|-----|-----|----|
| 南极工作点 | Bops             | V <sub>DD</sub> =3.5V @ T <sub>a</sub> =25°C | 25  | 40  | 55  | Gs |
| 南极释放点 | B <sub>RPS</sub> | V <sub>DD</sub> =3.5V @ T <sub>a</sub> =25°C | 17  | 32  | 47  | Gs |
| 北极工作点 | Вори             | V <sub>DD</sub> =3.5V @ T <sub>a</sub> =25°C | -55 | -40 | -25 | Gs |
| 北极释放点 | B <sub>RPN</sub> | V <sub>DD</sub> =3.5V @ T <sub>a</sub> =25°C | -47 | -32 | -17 | Gs |
| 迟滞    | B <sub>HYS</sub> | V <sub>DD</sub> =3.5V @ T <sub>a</sub> =25°C | 3   | 8   | 13  | Gs |

### 典型应用电路



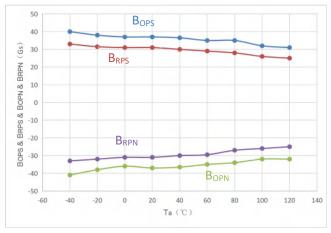


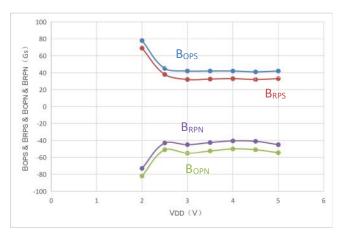

## 工作时序图



(An

IDD(AVG)


# 曲线 & 波形 (若无特别指明, VDD=3.5V @ Ta=25°C)



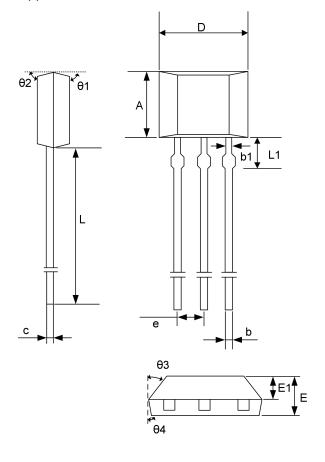





 $I_{DD(AVG)}$  vs.  $V_{DD}$ 

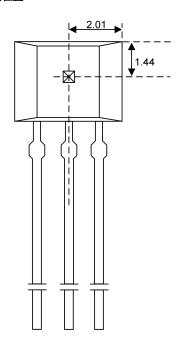





磁感应点 vs. Ta

磁感应点 vs. V<sub>DD</sub>




## 封装信息

## (1)TO-92S 封装



| hh 🗆 | 毫米      |      |      |  |  |
|------|---------|------|------|--|--|
| 符号   | 最小值     | 典型值  | 最大值  |  |  |
| Α    | 2.90    | 3.00 | 3.10 |  |  |
| b    | 0.35    | 0.39 | 0.56 |  |  |
| b1   | -       | 0.44 | -    |  |  |
| С    | 0.36    | 0.38 | 0.51 |  |  |
| D    | 3.9     | 4.0  | 4.1  |  |  |
| е    | 1.27BSC |      |      |  |  |
| E    | 1.42    | 1.52 | 1.62 |  |  |
| E1   | -       | 0.75 | -    |  |  |
| L    | 13.5    | 14.5 | 15.5 |  |  |
| L1   | -       | 1.6  | -    |  |  |
| θ1   | -       | 6°   | -    |  |  |
| θ2   | -       | 3°   | -    |  |  |
| θ3   | -       | 45°  | -    |  |  |
| θ4   | -       | 3°   | -    |  |  |

#### Hall 感应点位置

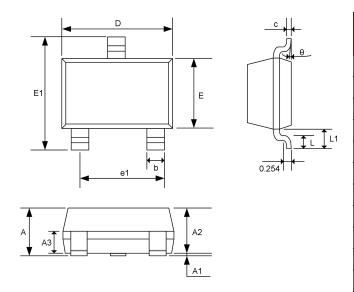


**注意**: 所有单位均为毫米。

## 打标信息:

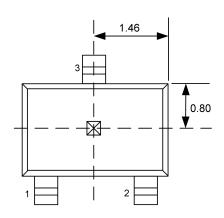
第一行: CC6201 一产品名称

第二行: XXYYWW


XX - 代码

YY - 封装年份的后两位数

WW - 封装时的星期数



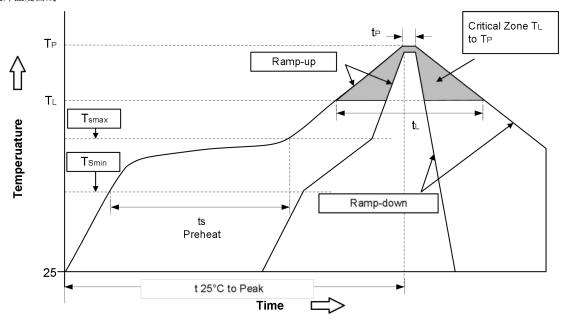

## (2)SOT23-3 封装



| Art II | 毫米   |      |      |  |  |
|--------|------|------|------|--|--|
| 符号     | 最小值  | 典型值  | 最大值  |  |  |
| А      | -    | -    | 1.35 |  |  |
| A1     | 0.04 | 0.08 | 0.12 |  |  |
| A2     | 1.00 | 1.10 | 1.20 |  |  |
| А3     | 0.55 | 0.65 | 0.75 |  |  |
| b      | 0.37 | 0.40 | 0.43 |  |  |
| С      | 0.11 | 0.16 | 0.21 |  |  |
| D      | 2.77 | 2.90 | 3.07 |  |  |
| E      | 1.40 | 1.60 | 1.80 |  |  |
| E1     | 2.70 | 2.85 | 3.00 |  |  |
| e1     | 1.80 | 1.90 | 2.00 |  |  |
| L      | 0.35 | 0.45 | 0.55 |  |  |
| L1     | 0.55 | 0.65 | 0.75 |  |  |
| θ      | 0°   | -    | 8°   |  |  |

#### Hall 感应点位置




注意: 所有单位均为毫米。

**打标信息:** 第一行: 6201



# 推荐的焊接条件 SOT23-3 焊接条件

#### 1、回流焊温度曲线



#### 2、回流焊温度设定

| 分布图特征                            | 封装厚度<2.5mm,并且封装体积<350mm³ |
|----------------------------------|--------------------------|
| 平均倾斜上升率                          | 日上 200年                  |
| $(T_L \text{ to } T_p)$          | 最大 3°C/秒                 |
| 预热                               |                          |
| -最小温度(T <sub>smin</sub> )        | 100°C                    |
| -最大温度(T <sub>smax</sub> )        | 150°C                    |
| -时间(最小-最大)(t <sub>s</sub> )      | 60-120 秒                 |
| T <sub>smax</sub> -TL 倾斜上升率      |                          |
| 保持以上时间                           |                          |
| -温度(T <sub>L</sub> )             | 183°C                    |
| -时间(t <sub>L</sub> )             | 60-150 秒                 |
| 峰值温度(T <sub>p</sub> )            | 260 +0/-5°C              |
| 实际峰值温度 5°C 内的时间(t <sub>p</sub> ) | 20-40 秒                  |
| 倾斜下降率                            | 最大 6°C/秒                 |
| 25°C 到峰值温度的时间                    | 最大 6 分钟                  |
|                                  |                          |

#### 3、手工焊接条件

| 手工焊接条件 | 260°C/10 秒 |
|--------|------------|
|--------|------------|



## 关于芯进

成都芯进电子有限公司(CrossChip Microsystems Inc.)成立于 2013 年,是一家国家高新技术企业,从事集成电路设计与销售。公司技术实力雄厚,拥有 60 余项各类专利,主要应用于霍尔传感器信号处理,拥有下列产品线:

- ✓ 高精度线性霍尔传感器
- ✓ 各类霍尔开关
- ✓ 单相电机驱动器
- ✓ 单芯片电流传感器
- ✓ AMR磁阻传感器
- ✔ 隔离驱动类芯片

#### 联系我们

#### 成都

地址: 四川省成都市高新西区天辰路88号3号楼2单元4楼

电话: +86-028-87787685

邮箱: support@crosschipmicro.com

网址: https://www.crosschipmicro.com

#### 深圳

地址: 深圳市南山区粤海街道科园路 18 号北科大厦 6 楼 605 室

#### 上海

地址: 上海市浦东新区盛荣路 88 号盛大天地源创谷 1 号楼 602 室

#### 苏州

地址: 江苏省苏州市虎丘区苏州高新区金山东路 78号





# 规格书版本更新

| 开放日期    | 更改摘要               | 版本     |
|---------|--------------------|--------|
| 2023-09 | 补充 SOT23-3 封装回流焊曲线 | rev1.9 |
|         |                    |        |