

1 / 21 Rev03 Jul/27/2022

DATASHEET AS55 SERIES

AloTSensing Inc.

Website: http://www.aiotsensing.com

2 / 21 Rev03 Jul/27/2022

History of Revision

Datasheet Rev.	Date	Note
01	Sep/22/2021	Released

3 / 21 Rev03 Jul/27/2022

CONTENTS

1. Features	4
2.Applications	4
3.Descriptions	
4. Standard Pressure Ranges	5
5. Performance Characteristics	5
6. Block Diagram	6
7.1 Electrical Specifications	6
7.2 Absolute Maximum Rating	7
8. Function Descriptions	7
8.1 General Description	7
8.2 Factory Calibration	7
8.3 Sensor Output Conversion	7
9. Registers	8
9.1. Normal Registers	8
9.2 OTP Registers	9
10. High-Speed I ² C Digital Output Interface	9
10.1 I ² C Specification	9
10.2 I ² C Device Address	10
10.3 I ² C Protocol	11
11. SPI Interface	13
12. Application Circuit	15
13. Package Outline	16
14.Recommended Pad Layout	18
15.Packing Options	18
16. How to Order	18
17. Soldering Recommendation	19
18. Sensor Reading	20
19. Legal Disclaimer	21

4 / 21 Rev03 Jul/27/2022

1. Features

- Pressure ranges from 0 to30Bar
- Gage or Absolute pressure type
- 24-bit digital, pressure calibrated and temperature compensated output
- I2C interface & SPI interface
- 1.8V to 5.5V power supply
- Low power consumption
- Package size is 4.5mm x 4.5mm x2.0mm
- Package size is 4.5mm x 4.5mm x3.7mm
- Package size is 4.5mm x 4.5mm x6.9mm

2. Applications

- Medical Breathing
- Industrial Controls
- HVAC
- Environmental Controls
- Portable Equipment

3. Descriptions

The AS55 series are high precision MEMS sensor family offers state-of-the-art pressure transducer technology to produce a digital output, fully conditioned, multi-order pressure and temperature compensated outputs. This series provides JEDEC standard Package is surface mount with a stainless-steel cap and is RoHS compliant.

Combining the pressure sensor with a signal-conditioning ASIC in a single package simplifies the use of advanced silicon micro-machined pressure sensors. The pressure sensor can be mounted directly on a standard printed circuit board, calibrated pressure signal can be acquired from the digital interface. This eliminates the need for additional circuitry, such as a compensation network or microcontroller containing a custom correction algorithm.

5 / 21 Rev03 Jul/27/2022

4. Standard Pressure Ranges

Absolute Pressure Type Products									
Device	Operating Range	Proof Pressure	Burst Pressure						
AS55-01BA	0~1BA	2XFSS	3XFSS						
AS55-02BA	0~2BA	2XFSS	3XFSS						
AS55-05BA	0~5BA	2XFSS	3XFSS						
AS55-07BA	0~7BA	2XFSS	3XFSS						
AS55-10BA	0~10BA	2XFSS	3XFSS						
AS55-20BA	0~20BA	2XFSS	3XFSS						
AS55-30BA	0~30BA	2XFSS	3XFSS						

Gage Pressure Type Products

Device	Operating Range	Proof Pressure	Burst Pressure
AS55H-010KG/N/D	0~10 kPa/-10~0kPa/±10 kPa	2XFSS	3XFSS
AS55H-040KG/N/D	0~40 kPa/-40~0kPa/±40 kPa	2XFSS	3XFSS
AS55H-100KG/N/D	0~100kPa/-100~0kPa/±100kPa	2XFSS	3XFSS
AS55H-200KG/C	0~200kPa/-100~200kPa	2XFSS	3XFSS
AS55H-400KG/C	0~400kPa/-100~400kPa	2XFSS	3XFSS
AS55H-800KG/C	0~800kPa/-100~800kPa	2XFSS	3XFSS

5. Performance Characteristics

5.1 Pressure

Parameter	Min	Тур	Max	Units	Specification Notes
Accuracy			±0.25	%FSS	@25°C,Absolute pressure
		±0.75		%FSS	@25°C,Gage pressure
Total error band			±1.00	%FSS	TEB
Response time@ OSR=1024		3.0*2		ms	
Long term stability		±0.1		%FSS/yr	

NOTE:

- 1.Accuracy:Include linearity, pressure hysteresis errors, and repeatability.
- 2.TEB: Total error band consists of offset and span temperature and calibration errors, linearity and pressure hysteresis errors, offset warm-up shift and offset position sensitivity errors.

5.2Temperature

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operation Temperature Range	ТОР		-40	25	85	$^{\circ}\!\mathbb{C}$
Temperature Absolute Accuracy		-20~60℃		±0.5		$^{\circ}$ C
Temperature Resolution of Output Data				0.01		$^{\circ}\mathbb{C}$

6 / 21 Rev03 Jul/27/2022

6. Block Diagram

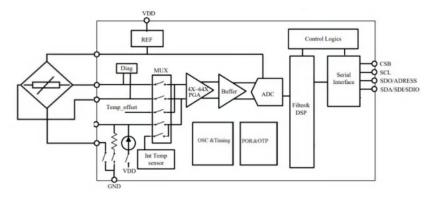


Figure 1: Functional Block Diagram

7. Electrical Specifications

7.1 Electrical Characteristics

Table7.1: DC Characteristics @VDD=3.3V, T=25℃ unless otherwise noted

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operation Supply Voltage	V _{DD}			3.3		V
Operation Temperature	ТОР		-40		85	${\mathbb C}$
Compensated Temperature	Tco		-10		60	$^{\circ}$ C
Supply Current @25°C on during conversion	I _{BDD} _pga on	PGA on (Gain>=4)		1.8	2.5	mA
Conversion time	Tc	OSR 32768 16384 8192 4096 2048 1024 512 256		43.0 35.0 12.0 7.0 4.0 3.0 2.0 2.0		ms
Supply current (1 sample per sec.)	ldd	OSR 32768 16384 8192 4096 2048 1024 512 256		77.4 63.0 21.6 12.6 7.2 5.4 3.6 3.6	107.5 87.5 30 17.5 10 7.5 5.0	uA
Power up reset time	PURT		15	30		ms
Standby Supply Current	IDDSTB	At25℃		0.1	0.2	μΑ
Serial Data Clock Frequency	fSCLK	I ² C protocol		100	400 10	kHz MHz
Digital Input High Voltage	VIH	Si i protocoi	0.8		10	V
Digital Input Low Voltage	VIL				0.2	V
Digital Output High Voltage	Voн	IO=0.5mA	0.9			V
Digital Output Low Voltage	V _{OL}	IO=0.5mA			0.1	V
Input Capacitance	CIN			4.7		pF

7 /21 Rev03 Jul/27/2022

7.2 Absolute Maximum Rating

Table 7.2: Absolute Maximum Rating

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply Voltage	V _{DD}		-0.3		5.5	V
Interface Voltage	VIF		-0.3		VDD+0.3	V
Storage Temperature Range	TSTG		-40		125	${\mathcal C}$
ESD Rating		Human body model	-2		+2	kV
Latch-up Current		At 85℃	-100		100	mA

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

8. Function Descriptions

8.1 General Description

The AS55 series consists of a piezo-resistive sensor and a sensor interface I^2 C. The main function of the I^2 C is to convert the uncompensated analogue output voltage from the piezo-resistive pressure sensor to a 24-bit digital value, as well as providing a 16-bit digital value for the temperature of the sensor, and compensates them by a patented algorithm. The fully-compensated values can be read out by external MCU.

8.2 Factory Calibration

Every sensor is individually factory calibrated for sensitivity and offset for both of the temperature and pressure measurements; further calibrations are not necessary to be done by the user. The OTP registers are used to store the configurations and calibration coefficients for the sensor.

8.3 Sensor Output Conversion

For each pressure measurement, customer used to send a conversion command to the sensor, read back the conversion data from the normal register to be stored from 0x06 to 0x0a, the pressure data is stored from 0x06 to 0x08, the highest bit is sign bit, the temperature data is stored from 0x09 to 0x0a, the highest bit is sign bit. All the data are sent starting from the MSB.

8.4 Serial Interface

The AS55 provides both SPI and I² C interface for serial communication and 'CSB' pin is used to switch between these two protocols. Pulling 'CSB' pin low selects the SPI interface, leaving 'CSB' pin float or puling it high selects the I² C interface.

PIN CSB	MODE	PIN USED	NOTE
Float	I ² C	SDA, SCL	
Low	SPI	SDI, SDO, SCK	Default 3SPI

8 /21 Rev03 Jul/27/2022

9. Register

All the registers can be departed into normal registers and OTP registers. The normal registers are used to send a conversion command to the Sensor, read back the conversion data and perform the OTP blowing. The OTP registers are used to store the configurations and calibration coefficients for the Sensor, whose default values can be programmed by the inside OTP banks.

9.1. Normal Register

Table8.1 normal registers

Addr	Description	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default
0x00	SPI_Ctrl	RW	SDO_ac	LSB_fi	Softreset			Softres	LSB_firs	SDO_active	0x00
			tive	rst				et			
0x01	Part_ID	R	PartID								0x00
0x02	Status	R	Error_cod	е					1'b0	DRDY	
0x06	DATA_MSB	R	Data out[2	Data out[23:16]							
0x07	DATA_CSB	R	Data out[2	15:8]							0x00
0x08	DATA_LSB	R	Data out[7	7:0]							0x00
0x09	TEMP_MSB	R	Temp out	Temp out[15:8]							
0x0A	TEMP_LSB	R	Temp out	[emp out[7:0]							0x00
0x30	CMD	RW	Sleep_tim	e[3:0]			Sco	Measure	ment_ctrl]2	:0]	0x00

Reg0x00

SDO_active: 1: 4-wire SPI, 0: 3-wire SPI

LSB first: 1: LSB first for SPI interface, 0: MSB first for SPI interface

Soft_reset: 1: Reset all the registers (except 'margin'), automatically come back to 0 after reset

complete.

Reg0x01

PartID: OTP programmed 8 bits Part ID, corresponding to OTP register Reg0xA4. Read only from the address 0x01.

Reg0x02

DRDY: 1, indicates once conversion complete, and the output data is ready for reading.

Error code: When diagnostic function enabled, These bits stores the error information.

Error_code[3]: VINP short to VDD Error_code[2]: VINP short to GND Error_code[1]: VINN short to VDD

Error_code[0]: VINN short to GND

Reg0x06-Reg0x08

Data_out: 24 bits ADC output data when 'raw_data_on' = 0 with an LSB equals to $(1/2^23)*(VEXT-PSW)$. 24 bits calibrated data when 'raw_data_on' = 1.

Reg0x09-Reg0x0a

Temp out: Temperature output with an LSB equals to (1/256) °C

Reg0x30

Sleep_time[3:0]: 0000:0ms, 0001:62.5ms, 0010:125ms ... 1111: 1s, only active during sleep mode conversion.

Measurement_control: 000b, indicate a single shot temperature signal conversion. 001b, indicate a single shot sensor signal conversion. 010b: indicate a combined conversion (once temperature conversion immediately followed by once sensor signal conversion). 011b: indicate a sleep mode conversion (periodically perform once combined conversion with an interval time of 'sleep_time'), 100b: OTP programming mode, enter this mode to when programming OTP banks.

Sco: 1, Start of conversion, automatically come back to 0 after conversion ends (except sleep mode conversion).

9 / 21 Rev03 Jul/27/2022

9.2 OTP Registers

Table8.2 OTP registers

Addr	Description	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default
0xa4	Part_ID	RW									OTP
0xa5	Sys_config	RW	System f	unction	Prohibit m	odifica	ation			DIAG_on	OTP
0xa6	P_config	RW	System f	unction	Prohibit m	odifica	ation	OSR_I	P[2:0]		ОТР
0xa7	T_config	RW	System f	System function, Prohibit modification OSR_T[2:0]							ОТР
0xa9		R									OTP

Reg0xA4

PartID: OTP programmed 8 bits Part ID, also can be read from address 0x01.

Reg0xA5

Diag_on: 1, Enable diagnosis function.

Reg0xA6

OSR_P: set the over sampling ratio of the sensor signal conversion channel. 000:1024X, 001:2048X, 010:4096X, 011:8192X, 100:256X, 101:512X, 110:16384X, 111:32768X.

Reg0xA7

OSR_T: set the over sampling ratio of the temperature conversion channel. 000:1024X, 001:2048X, 010:4096X, 011:8192X, 100:256X, 101:512X, 110:16384X, 111:32768X.

Reg0xA9

10. High-Speed I²C Digital Output Interface

The I²C interface is fully compatible to the official I²C protocol specification.

10.1 I²C Specification

Table 9.1: I²C Slave Timing Values

		0 100		I ² C		l lmit
Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Clock frequency	f _{BsclB}				400	kHz
SCL low pulse	t _{BLOWB}		1.3			μs
SCL high pulse	t _{внібнв}		0.6			μs
SDA setup time	t _{BSUDATB}		0.1			μs
SDA hold time	t _{BHDDATB}		0.0			μs
Setup Time for a repeated start condition	t _{BSUSTAB}		0.6			μs
Hold time for a start condition	t _{BHDSTAB}		0.6			μs
Setup Time for a stop condition	tвsusтов		0.6			μs
Time before a new transmission can start	t _{BBUFB}		1.3			μs

10 / 21 Rev03 Jul/27/2022

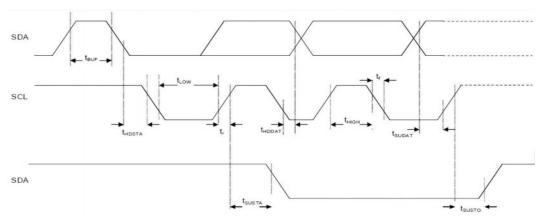


Figure 2: I²C Timing Diagram

The I²C interface protocol has special bus signal conditions. Start (S), stop (P) and binary data conditions are shown below. At start condition, SCL is high and SDA has a falling edge. Then the slave address is sent. After the 7 address bits, the direction control bit R/W selects the read or write operation. When a slave device recognizes that it is being addressed, it should acknowledge by pulling SDA low in the ninth SCL (ACK) cycle.

At stop condition, SCL is also high, but SDA has a rising edge. Data must be held stable at SDA when SCL is high. Data can change value at SDA only when SCL is low.

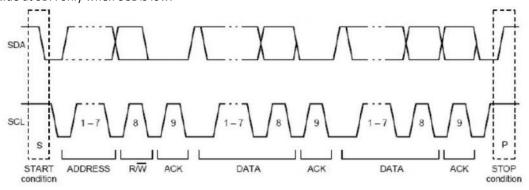


Figure 3: I²C Protocol

10.2 I²C Device Address

The I²C device address is shown below. The LSB of the device address is corresponding to address 0XDA (write) and 0XDB (read).

A7	A6	A5	A4	А3	A2	A1	W/R
1	1	0	1	1	0	SDO/ADDR	0/1

11 / 21 Rev03 Jul/27/2022

LO.3 I ² CPro												
.0.3.1 P_Cd	•							ACK				
	master to sla		s		Start							
From s	slave to mast	er	Р	Stop			Z	NAC	K			
S Slave	Addr 0 A	Regist	ter /	Con	fig_Da	ta /	P					
Register=0X Config_Data												
Address	Descriptio	n R/W	Bit7	' Bit	6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	default
0xA6	P_CONFIG	RW			No	chang	e		OSR_P<	2:0>		ОТР
.00:256X, 1	the over samp 01:512X, 110:	_		_	al conv	ersion	channe	el. 000:	:1024X, (001:204	8X, 010:	4096X, 011
.0.3.2 T_Co	ntig master to sla	ve	s	Start			Α	ACK				
	slave to mast		Р					NAC	K			
S Slave	Addr 0 A	Regist			fig_Da	ta /						
Register=0X								l				
Config_Data												
Address	Descriptio	n R/W	Bit7	Bit6	Bit	5 Bit	4 Bi	t3	Bit2	Bit1	Bit0	default
0xA7	T_CONFIG	RW			No c	hange	'	09	SR_T<2:0>	•		ОТР
11:8192X, 0.3.3 Send From	command master to slasslave to master to Addr 0	::512X, 110	: 1638	4X, 111:32 Start Stop			A P	ACK NAC		J01:204	8X, 010:	4096x,
ComReg=0x CommandD												
Address	Description	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1		Bit0	default
0x30	CMD	RW	Sleep_	time<3:0>	1		Sco	Meas	urement	_ctrl<2:0	>	ОТР
	<3:0>:0000:0m int_control<1:	: 0>: 010b:	indicat	e a comb					_	•		

3	٨
ALST	•
CENCING	

AS55 HIGH PRECISION

12 / 21

SENSING			<u> PI</u>	<u>(E33)</u>	UKE SE	<u>INSUI</u>	<u>1</u>			ev03 I/27/2022
10.3.4 Read Status										
From master to sla	ave	s	Sta	art			A AC	CK		
From slave to mas	ter	P	Sto	р			N NA	NCK		StatusReg=0x02 Status:
S SlaveAddr 0	Statu	sReg	A S	Sla	veAddr	1	A .	Status	N P	
Address Description	R/W	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x02 Status	R						1'b0		RDY	
DRDY: 1, indicates once co 10.3.5 Read the Pressure		•	and th	e outp	ut data is	ready	for read	ing.		
From master to slave	SS	itart		A A	CK					
From slave to master	PS	itop		N N	ACK					
S SlaveAddr 0 A Com	Reg A	Read_T&F	A	Р						
Delay x ms waiting for convers	Delay x ms waiting for conversion complete									
	sReg A	SlaveAd	dr 1	A .	Status	N P				
S SlaveAddr 0 A PressRe	eg A S S	laveAddr 1		ressDat [23:16]		ssData 15:8]		Data :0]	TempData [15:8]	A TempData N P
Send Read commond	Read Status	Judge	ment St	tatus	Re	ead Pres	ssure & Te	emperatur	e Data	

10.3.6 Calculate Pressure and Temperature

Pressure ADC bits are 24 bits 2's complement. Data format: the highest bit is the sign bit (0 is a positive number, 1 is a negative number), 23 data bits. In the 23-bit data bits, there are high N integer bits, and the low n bits are decimal bit, read the ADC number and convert it to Pa. The formula is:Pressure = Read_ADC value/2^n,the n value is stored in register 0xa9.

Pressure(
$$Pa$$
)= $(\frac{\text{Read_PADC}[23:0]}{2^n})$

range	250Pa	500Pa	1kPa	2kPa	3~4kPa	5~8kPa	9~16kPa	17~32kPa
n	15	14	13	12	11	10	9	8
range	33~65kPa	66~100kPa	2Bar	3~5Bar	6~10Bar	11~20Bar	21~40Bar	45~86Bar
n	7	6	5	4	3	2	1	0

Temperature ADC bits are 16 bits 2's complement. Data format: the highest bit is the sign bit (0 is a positive number, 1 is a negative number),15 data bits. The high 7 bits are integer bits,the low 8 bits are decimal bits,equals to (1/256) °C.

Temperature (°C) =
$$(\frac{\text{Read_TADC}[15:0]}{256})$$

1 / 21 Rev03 Jul/27/2022

11. SPI INTERFACE

provides both SPI and I2C interface for serial communication and 'CSB' pin is used to switch between these two protocols. Pulling 'CSB' pin low selects the SPI interface, leaving 'CSB' pin float or puling it high selects the I2C interface.

11.1. INTERFACE SPECIFICATION

Table 6.1 SPI interface specifications

Symbol	Parameter	Condition	Min	Max	Unit
fBsclkB	Clock frequency	Max load on SDIO or SDO = 25pF		10	MHz
tBsclk_IB	SLCK low pulse		20		Ns
tBsclk_hB	SLCK high pulse		20		
TBsdi_setupB	SDI setup time		20		ns
TBsdi_holdB	SDI hold time		20		ns
TBsdo_odB	SDO/SDI output delay	Load = 25pF		30	ns
		Load = 250pF		40	ns
TBcsb_setupB	CSB setup time		20		ns
TBcsb_holdB	CSB hold time		40		ns

The figure below shows the definition of the SPI timing given in table 5.1

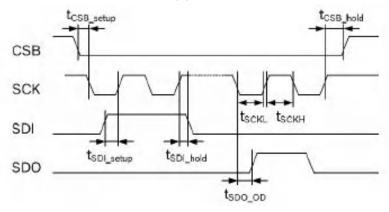


Figure 6.1 SPI timing diagram

The falling edge of CSB, in conjunction with the rising edge of SCLK, determines the start of framing. Once the beginning of the frame has been determined, timing is straightforward. The first phase of the transfer is the instruction phase, which consists of 16 bits followed by data that can be of variable lengths in multiples of 8 bits. If the device is configured with CSB tied low, framing begins with the first rising edge of SCLK. The instruction phase is the first 16 bits transmitted. As shown in Figure 5.2, the instruction phase is divided into a number of bit fields.

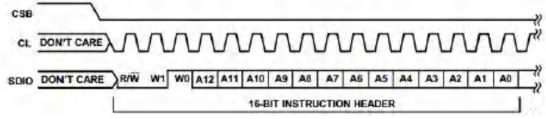


Figure 6.2, Instruction Phase Bit Field.

1 / 21 Rev03 Jul/27/2022

The first bit in the stream is the read/write indicator bit (R/W). When this bit is high, a read is being requested, otherwise indicates it is a write operation. W1 and W0 represent the number of data bytes to transfer for either read or write (Table 5.2). If the number of bytes to transfer is three or less (00, 01, or 10), CSB can stall high on byte boundaries. Stalling on a nonbyte boundary terminates the communications cycle. If these bits are 11, data can be transferred until CSB transitions high.

CSB is not allowed to stall during the streaming process. The remaining 13 bits represent the starting address of the data sent. If more than one word is being sent, sequential addressing is used, starting with the one specified, and it either increments (LSB first) or decrements (MSB first) based on the mode setting.

Table6.2. W1 and W0 settings

W1:W0	Action	CSB stalling			
00	1 byte of data can be transferred.	Optional			
01	2 bytes of data can be transferred. Optio				
10	3 bytes of data can be transferred.	Optional			
11	4 or more bytes of data can be transferred. CSB must be held low	No			
	for entire sequence; otherwise, the cycle is terminated.				

Table6.2. W1 and W0 settings

Data follows the instruction phase. The amount of data sent is determined by the word length (Bit W0 and Bit W1). This can be one or more bytes of data. All data is composed of 8-bit words. Data can be sent in either MSB-first mode or LSB-first mode (by setting 'LSB first' bit). On power up, MSB-first mode is the default. This can be changed by programming the configuration register. In MSB-first mode, the serial exchange starts with the highest-order bit and ends with the LSB. In LSB-first mode, the order is reversed. (Figure 5.3)

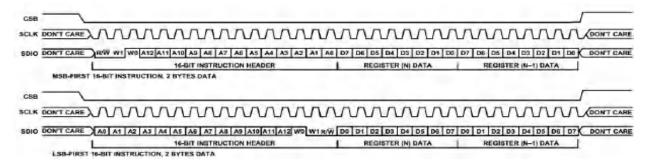


Figure 6.3: MSB First and LSB First Instruction and Data Phases

Register bit 'SDO_active' is responsible for activating SDO on devices. If this bit is cleared, then SDO is inactive and read data is routed to the SDIO pin. If this bit is set, read data is placed on the SDO pin. The default for this bit is low, making SDO inactive.

11.2. SPI Protocol

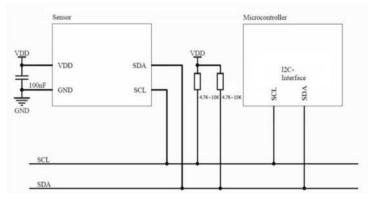
11.2.1 SPI Write one byte

CMD:0X00

11.2.2 SPI Read one byte

CMD:0X80

11.2.3 SPI Read Sensor (Pressure and Temperature)


Send Read cmd (0x00)(0x30)(0x0A)	WaitADC	Read 0x06	Read 0x07	Read 0x08	Read 0x09	Read 0x0A
-------------------------------------	---------	-----------	-----------	-----------	-----------	-----------

15 / 21 Rev03 Jul/27/2022

12. Application Circuit

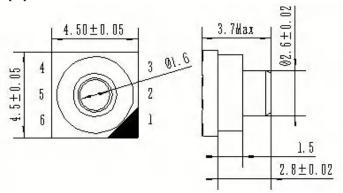
12.1 I²C Interface

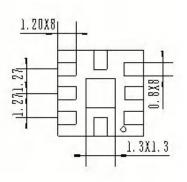
12.2 SPI Interface

12.3 Pin Configuration and Description

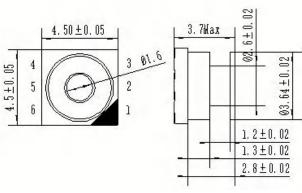
		· ·	
Pin	Name	Туре	Function
1	VDD	Р	Positive supply voltage
2	4.0.0 /0.0.0		Serial data output in 4-wire SPI mode
	ADR/SD0	I/O	Address select in I ² C mode
3	SCL	1	Serial data clock
4	SDA/SDI/SDIO	1/0	Serial data input/output in I2C mode (SDA)
			Serial data input in 4-wire SPI mode (SDI)
			Serial data input/output in 3-wire SPI mode (SDIO)
5	CSB	I	Chip select (Float I ² C / Low SPI)
6	GND	G	Power Ground
Others	NC	NC	Not Connect

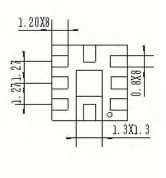
NOTE:

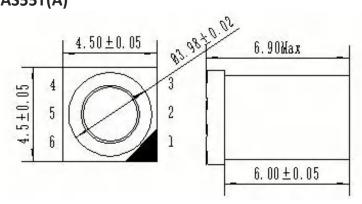

• Do not connect to NC pins.

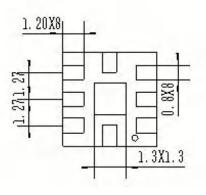


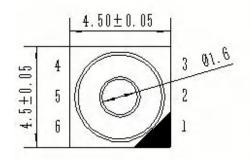
16 / 21 Rev03 Jul/27/2022

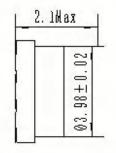

13. Package Outline (mm)

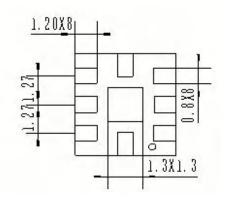

13.1 AS55(A)



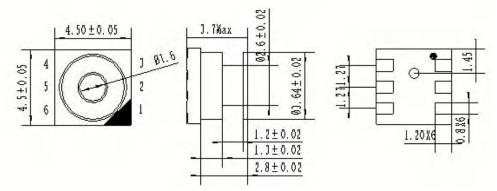

13.2 AS55H(A)

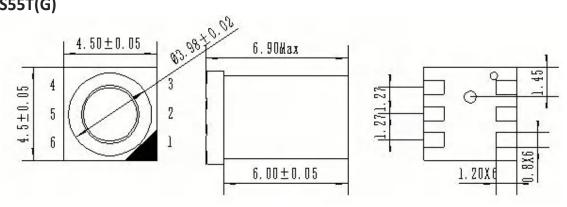



13.3 AS55T(A)

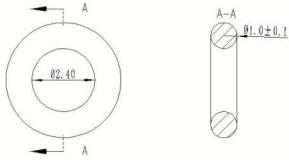


13.4 AS55L(A)



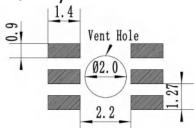


17 / 21 Rev03 Jul/27/2022

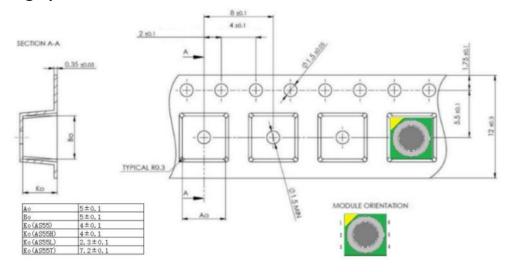

13.5 AS55H(G)

13.6 AS55T(G)

13.7 Recommend to the "O" ring select



Note: Silicon rubber ,hardness 50 \pm 5 shore A



18 /21 Rev03 Jul/27/2022

14. Recommended Pad Layout (unit: mm)

15. Packing Options

16.How to Order

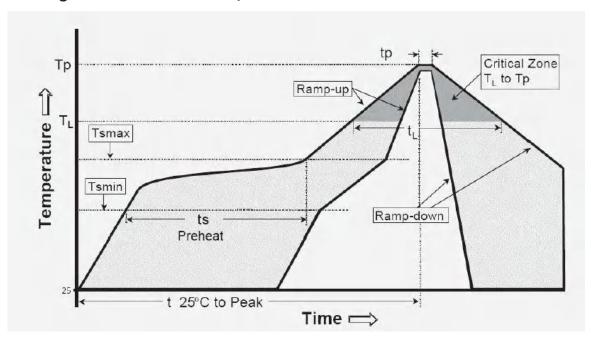

Refer to Table 5 for standard part numbers offered which includes the pressure range and package. Example P/N with options: AS55-01BA-W10

Table 5 - Part Numbering Scheme:

AS55	-	001	В	A-	W	10	С	
Product		Pressure	Pressure	Pressure		Customer	Tomp	
Series		Range	Unit	Type		code	Temp.	
			B bar	A Absolute	G Gas		C: 0~50℃	
	H "O" ring cap T Tube cap		K kPa	G Gage	W Water proof		S: -20~60℃	
				N Negative	C Corrosion Proof		T:TBD	
				D Negative				
				& Positive				
				C Composite				

1 / 21 Rev03 Jul/27/2022

17. Soldering Recommendation (IPC/JEDEC J-STD-020D)

IPC/JEDEC J-STD-020D	Pb-Free Assembly
Average Ramp-up rate(TL-Tp)	3℃/s (Max.)
Preheat	
-Temperature Min. (Tsmin)	140℃
-Temperature Max. (Tsmax)	170℃
–Time (Min. to Max.) (ts)	60-180 seconds
Tsmax to TL –Tp	3℃/s (Max.)
Time maintained above:	
-Temperature (TL)	200℃ above
-Time (tL)	60-150 seconds
Peak temperature (Tp)	200~220℃
Time of Real peak temperature within 5 °C (tp)	40 seconds
Average Ramp-down rate(Tp-TL)	6℃/s (Max.)
Time 25°C to peak temperature	8min. (Max.)

Note

- 1) It is recommended that only one time reflow soldering, no more than two times.
- 2) After reflow soldering or other high temperature processes, wait for at least 48 hours (or as required by the data sheet) before data reading and processing.
- 3) Spot cleaning by hand if necessary, DO NOT wash or submerge sensor in cleaning liquid.
- 4) It is recommended to use the medium temperature solder paste.

20/ 21 Rev03 Jul/27/2022

18.Sensor Reading

```
void Read_AIOT_Sensor(void)
{
         u32 PressData, TempData;
         u8 Status = 0x00;
         u8 Read_Data[7] = {0x00};
         IIC Init();
        delay_ms(50);
        IIC_Start();
        IIC_Send_Byte(0xda);//0xda//0xd8
        IIC Wait Ack();
        IIC_Send_Byte(0x30);
        IIC_Wait_Ack();
        IIC_Send_Byte(0x0A);//PT_Read
        IIC_Wait_Ack();
        delay_ms(100);
        IIC Stop();//
        IIC Start();
        IIC_Send_Byte(0xda);
        IIC_Wait_Ack();
        IIC Send Byte(0x02);
        IIC_Wait_Ack();
        IIC Start();
        IIC_Send_Byte(0xdb);//0xdb//0xd9
        IIC_Wait_Ack();
        Read_Data[0]=IIC_Read_Byte(0);
        IIC_Wait_Ack();
        IIC Stop();
        Status = Read Data[0];
        if(Status & 0x01)
                 IIC_Start();
                 IIC_Send_Byte(0xda);
                 IIC_Wait_Ack();
                 IIC_Send_Byte(0x06);
                 IIC_Wait_Ack();
                 IIC Start();
                 IIC_Send_Byte(0xdb);
                 IIC Wait Ack();
                  Read_Data[1] = IIC_Read_Byte(1);//PRESSURE[23:16]
                 Read Data[2] = IIC Read Byte(1);//PRESSURE[15:8]
                 Read_Data[3] = IIC_Read_Byte(1);//PRESSURE[7:0]
                 Read_Data[4] = IIC_Read_Byte(1);//TEMPERATURE15:8]
                 Read_Data[5] = IIC_Read_Byte(0);//TEMPERATURE[7:0]
                 IIC_Stop();
                 PressData = (Read_Data[1]*65536)+(Read_Data[2]*256)+Read_Data[3];
                 TempData = (Read_Data[4]*256)+Read_Data[5];
}
```


21/ 21 Rev03 Jul/27/2022

19.Legal Disclaimer

1)For the export of products which are controlled items subject to foreign and domestic export laws and regulations, you must obtain approval and/or follow the formalities of such laws and regulations.

2)Products must not be used for military and/or antisocial purposes such as terrorism, and shall not be supplied to any party intending to use the products for such purposes.

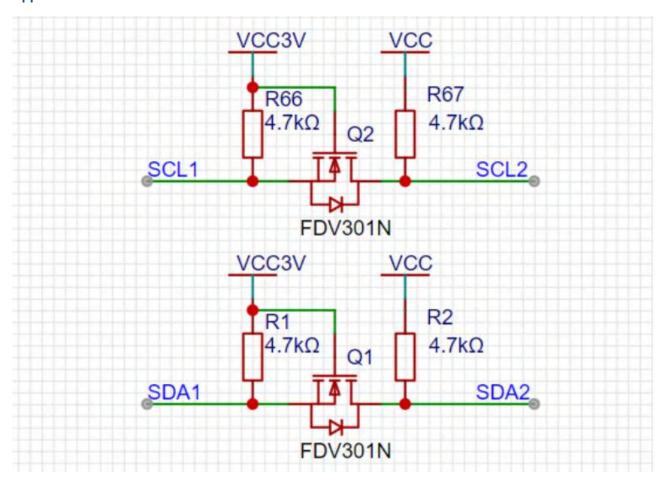
3)Unless provided otherwise, the products have been designed and manufactured for application to equipment and devices which are sold to end-users in the market.

4)Before using products, which were not specifically designed for use in automotive applications, please contact an AIOT sales representative.

5) This specification is subject to change without notice.

AloTSensing Inc.

TEL: +86 0551-65336537


Email: sales@aiotsensing.com

Website: http://www.aiotsensing.com

Address: 2nd Floor, Building 4, Mingzhu Industrial Park, No. 106, Chuangxin Avenue, High-tech Zone,

Hefei City, 230088 China

Appendix A:Recommended communication level conversion circuit.

