磁编码器

1.产品概述

VCE2755S 是一款基于各向异性磁阻(AMR)技术,高度集成的旋转磁编码器芯片,它在一个小型封装内集成了 AMR 磁传感器和高精度 CMOS 处理电路,实现 14bit 分辨率的 360° 磁场角度检测。基于 AMR 在饱和工作模式下对磁场强度变化不敏感的优势,VCE2755S 具备优异的抗震动和抗温漂的功能,适用于各种使用环境严苛的场合。VCE2755S 提供四种不同的角度信号输出方式: SPI、ABZ、UVW 和 PWM,方便用户根据不同需求而选用。VCE2755S 磁编码器具备极低的延迟(<2uS),同时支持高达 18000rpm 的高转速,适用于各种典型的需要角度位置反馈和速度检测的应用场景。

2. 关键特性

关键技术	✓ 各向异性磁阻(AMR)技术 ✓ 特殊 ASIC 电路设计实现高转速旋转角度的精确测量
工作特性	 ✓ AMR、ASIC 集成于同一芯片封装 ✓ 基于 AMR 和霍尔技术,实现 0~360° 检测 ✓ 14 位角度分辨率 ✓ 精度: ±0.3° ✓ 接口: SPI, PWM, ABZ, UVW ✓ 最大追踪转速: 18000rpm ✓ 角度输出延迟: < 2μs ✓ 宽电压范围: 3~5.5V ✓ 宽温度范围: -40~125℃ ✓ 低磁场阈值检测 ✓ 追踪丢失报警 ✓ 兼容轴心安装和偏心安装 ✓ 内置 MTP,可多次编程,无需高压编程端口 ✓ 内置温度补偿

3. 应用领域

电机控制	✓	典型应用有步进伺服电机、伺服电机、直流无刷电机。
云台	✓	典型应用有无人机、手持云台角度控制。
机器人	✓	典型应用有工业机器人臂、商用机器人旋转角度检测与控制。

4. 引脚定义

VCE2755S 采用 SOP8 封装工艺。

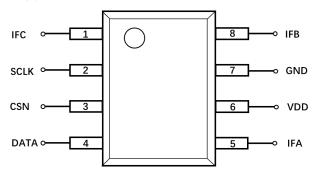


图 1: SOP8 封装顶部透视图

表 1. 管脚说明

管脚名	管脚号	描述
IFC	1	Z/W 信号输出
SCLK	2	3 线 SPI 时钟信号,内部上拉
CSN	3	SPI 片选信号,内部上拉
DATA	4	SPI 3 线模式下为双向输入输出,输入内部上拉
IFA	5	A/U/PWM 信号输出
VDD	6	电源
GND	7	地
IFB	8	B/V 信号输出

5. 功能框图

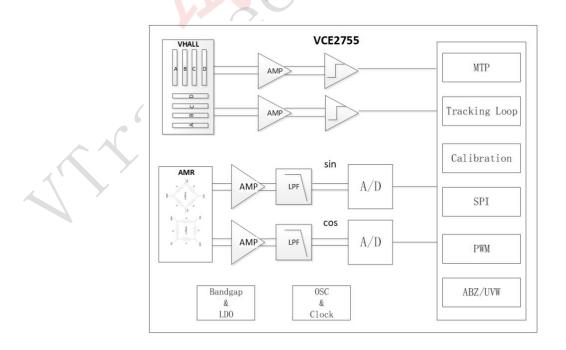


图 2: 芯片功能框图

6. 极限参数

表 2. 极限参数

参数	符号/说明	最小值	最大值	单位
供电电压	$ m V_{dd}$	-0.5	6	V
存储温度	$T_{ m stg}$	-50	150	${\mathbb C}$
工作温度	T_{a}	-40	125	${\mathbb C}$
输出电流	IFA, IFB, IFC, DATA	-20	20	mA
ESD (HBM)	V _{ESD} (HBM)	-8	+8	kV
ESD (HDM)	V _{ESD} (CDM)	-2	+2	kV
Latch Up	lιυ	-400	400	mA

7. 产品性能参数

表 3 产品性能参数

TO 7 HATE INCOME.						
参数	符号	条件	最小值	典型值	最大值	单位
供电电压	V_{dd}	-40°C≤T≤+125°C	3.0	3. 3/5	5. 5	V
工作电流	${ m I}_{ m dd}$	-	_	10	-	mA
最小分辨率	LSB	N 步/圈,N 最大为 2 ¹⁴		0.02	-	0
精度	INL	25℃,没有安装偏差	-	± 0.3	-	0
瞬态噪声 1	TN	25℃, rms	_	0.01	_	0
迟滞窗口	H_{yst}		_	0.022	-	0
系统延时 1	$T_{\rm delay}$	不加补偿	_	2	-	us
上电复位	POR		2. 59	2.65	2. 75	V
POR 迟滞	POR hyst	_	_	0. 15	-	V
系统上电时间	T _{power-up}	_	_	16	_	ms
工作温度	T_{amb}	_	-40	_	125	$^{\circ}$
角度范围	A	_	0	_	360	0

Note¹: 瞬态噪声和系统延时可根据系统滤波情况进行配置调整。

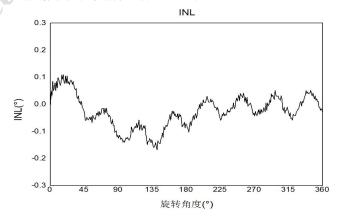


图 3: INL 角度精度

表 4. 数字 I/0 特性

参数	描述	条件	最小值	最大值	单位
$T_{\rm ro}$	输出上升时间	$C_{load} = 15pF$	-	30	ns
$T_{\rm fo}$	输出下降时间	C _{load} =15pF	_	30	ns
V _{HS0}	数字 I/0 输出逻辑高电平	I _{out} =2mA	VDD-0.3	-	V
V _{LS0}	数字 I/0 输出逻辑低电平	I _{out} =2mA	_	0.3	V
V _{HSI}	数字 I/0 输入逻辑高电平	DATA, SCLK, CSN pin	0.7*VDD	_	V
V _{LSI}	数字 I/0 输入逻辑低电平	DATA, SCLK, CSN pin	-	0.3*VDD	V

表 5. ABZ/PWM/UVW 输出模式参数

参数	描述	条件	最小值	典型值	最大值	单位
R_{AB}	AB 脉冲/圈	可配置	1	_	1024	ppr
$\mathrm{f}_{\mathtt{A}\mathtt{B}}$	ABZ 模式频率	转速 3000rpm, 分辨率 1000ppr	_	50	_	kHz
R_{uvw}	极对数/圈	可配置	1	_	16	对
$f_{\scriptscriptstyle ext{UVW}}$	UVW 模式频率	转速 3000rpm, 极对数 16	_	800	_	Hz
$f_{\scriptscriptstyle PWM}$	PWM 模式频率	可配置	-	971. 1/485. 6	_	Hz
T_{pwm-R}	PWM 模式上升沿时间	C _{load} =1nF		1	_	us
T_{PWM-F}	PWM 模式下降沿时间	C _{load} =1nF	-	1	-	us

表 6. MTP 特性

参数	描述	条件	最小值	典型值	最大值	单位
V_{MTP}	读写电压	_	3.0	_	5. 5	V
Memory Endurance	可擦写次数	_	_	1000	_	Cycle
Data retention	-	@150°C	_	10	_	Year

8. 输出模式

VCE2755S 提供 ABZ、UVW、PWM、SPI 输出模式, ABZ、UVW、PWM 输出模式由出厂配置。

8.1 I/O 引脚功能

#	7	ABZ/UVW	DWM	1446月	田丰
$\overline{\mathcal{X}}$	7	ABZ./IIVW	/PWM	刀形 另	田天

模式 管脚	ABZ	UVW	PWM
1	Z	W	-
2	SCLK	SCLK	SCLK
3	CSN	CSN	CSN
4	DATA	DATA	DATA
5	A	U	PWM
6	VDD	VDD	VDD
7	GND	GND	GND
8	В	V	-

8.2 ABZ、UVW 和 PWM 模式参考电路

VCE2755S 的 ABZ、UVW 和 PWM 模式参考电路如下图所示:

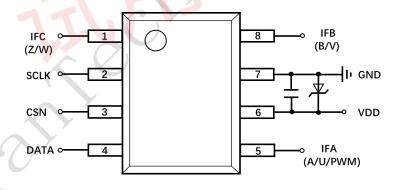


图 4: ABZ/UVW/PWM 模式输出参考电路图

8.3 ABZ 输出模式正交 A、B 和零位 Z 信号输出

图 5 是磁铁逆时针/顺时针旋转时,A、B、Z输出信号示意图。磁铁顺时针旋转时(参考图 19),A 信号输出滞后 B 信号 1/4 个周期,磁铁逆时针旋转时(参考图 20),则 A 信号输出超前 B 信号 1/4 个周期。Z 信号表示角度零点位置,代表 0°,磁铁旋转一圈(360°)后输出一个 Z 信号脉冲。Z 高电平宽度可以配置为 1, 2, 4, 8, 12, 16LSBs,根据占空比需求进行选择。

同样,Z高电平宽度也可配置为180°,一对Z高低电平输出即代表一个360°信号输出。

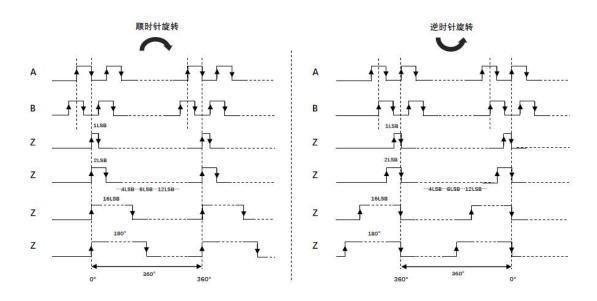


图 5: ABZ 信号输出示意图 (Z 脉冲宽度可选 1, 2, 4, 8, 12, 16LSBs, 180°)

ABZ 模式的分辨率可按需求进行配置,配置范围为 1~1024 脉冲/圈。如图 6 所示,当分辨率配置为 1024 个脉冲/圈,对应 4096 步/圈。

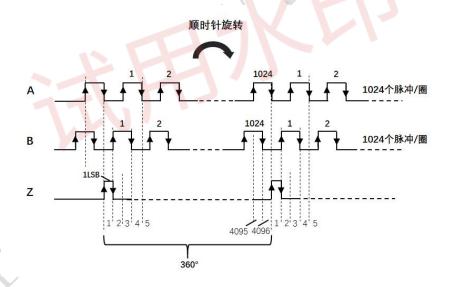


图 6: AB 输出分辨率为 1024 个脉冲/圈

8.4 ABZ 输出上电模式

表 8. ABZ 输出上电模式配置说明

方向寄存器	角度范围	脉冲	计算
DIRECTION=0	0~180°	B 超前于 A	ANGLE = $\frac{360}{PPR} \times$ 读取脉冲数
DIRECTION=0	180~360°	A 超前于 B	ANGLE = $360 - \frac{360}{PPR} \times$ 读取脉冲数
DIRECTION-1	0~180°	A 超前于 B	ANGLE = $\frac{360}{PPR} \times$ 读取脉冲数
DIRECTION=1	180~360°	B超前于A	ANGLE = $360 - \frac{360}{PPR} \times$ 读取脉冲数

ABZ 输出上电具有三种模式,出厂上电默认为模式一。

模式一: 无角度脉冲信号输出模式, 如图 7 所示;

模式二: 上电角度脉冲输出模式, Z 脉宽为 5ms, 如图 8 所示;

模式三: 上电角度脉冲输出模式, Z 脉宽为 10ms, 如图 9 所示。



图 7: 模式一上电状态信号

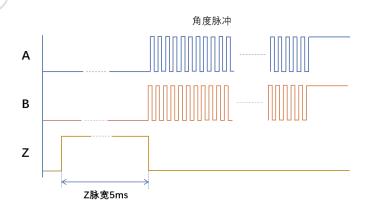


图 8: 模式二上电角度输出信号

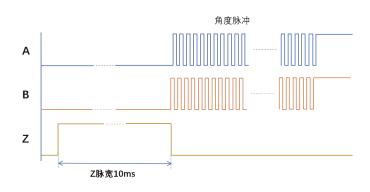


图 9: 模式三上电角度输出信号

8.4 UVW 模式输出

VCE2755S 提供 UVW 模式输出。U、V、W 三相之间互相间隔 120°的电角度,对应的机械角度取决于电机的磁极对数。用户可以根据需求对每一圈的 UVW 极对数进行配置选择。图 10 是 1 对极,2 对极的 UVW 输出信号示意图。

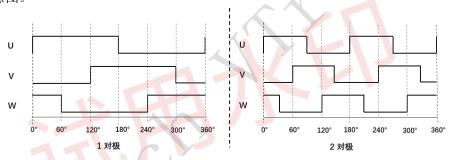


图 10: 1 对极、2 对极 UVW 信号输出波形

8.5 PWM 模式输出

VCE2755S 提供 PWM 模式输出。PWM 输出模式分辨率为 12bit,时钟 clock 为 T/4119, PWM 整个信号 周期包含 4119 个最小单位时钟,一个最小单位时钟脉冲为 250ns。PWM 模式默认频率为 971.1Hz,也可通过编程配置频率为 485.6Hz。

如图 11 所示,PWM 信号以 16 个连续的高电平最小时钟周期 ton 作为开始信号,以 8 个连续低电平最小单位时钟周期 toff 作为结束信号,中间 0~4095 个最小单位时钟周期表示绝对位置 0~360°绝对角度。每一个最小单位时钟代表 0.088°的绝对角度。

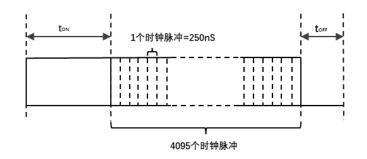


图 11: PWM 信号输出示意图

8.6 SPI 接口

VCE2755S 采用 SPI 协议 Mode3 模式,即 CPOL=1, CPHA=1, SCLK 空闲时是高电平,第 1 个跳变沿是下降沿,第 2 个跳变沿是上升沿,数据在上升沿时被采集。SPI 时序如图 12 所示。

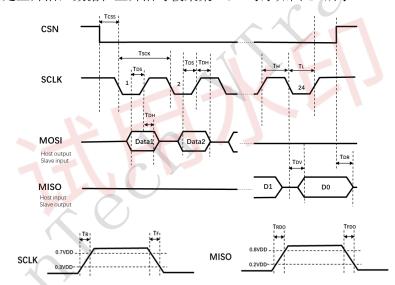


图 12: SPI 时序图

表 9. SPI 时序参数

,					
参数	条件	最小值	典型值	最大值	单位
T_{CSS}	CSN Setup Time	100	_	_	ns
T_{CSH}	CSN Hold Time	0. 5 • TSCK	_	_	ns
$T_{\rm H}$	SCLK High Time	30	_	_	ns
T_L	SCLK Low Time	30	_	_	ns
T_{SCK}	SCLK Cycle Time	60	_	_	ns
T_R	SCLK Rise Time	_	10	_	ns
T_{F}	SCLK Fall Time	_	10	_	ns
T_{RDO}	Data Output Rise Time	-	10	-	ns

T_{FDO}	Data Output Fall Time	-	10	_	ns
T_{DS}	Data Setup Time	10	_	_	ns
T_{DH}	Data Hold Time	10	_	_	ns
T_{DV}	Data Valid Time	_	_	15	ns
T_{DR}	Data Release Time	_	-	30	ns

8.6.1 SPI 参考电路如下图所示:

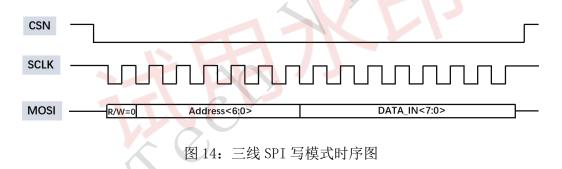



图 13: 三线 SPI 参考电路示意图

8.6.2 三线 SPI 协议

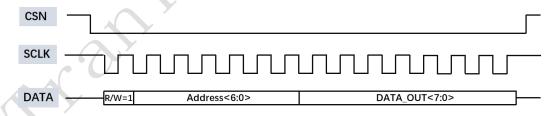


图 15: 三线 SPI 读模式时序图

图 14~15 是三线 SPI 写、读时序图。信号通信触发以片选 CSN 信号下降沿开始,以上升沿结束。SCLK 时钟信号数据由下降沿开始进行通信,由上升沿进行数据采集。

8.6.3 SPI 读取角度数据

寄存器 0x03,0x04 和 0x05 存储了 18 位角度数据和 2 个检测位,其中角度数据有效位数为 14 位。 常规的 SPI 模式,读取一次完整的角度数据需要发送一次读取命令,读取 0x03,0x04,0x05 的寄存器

一组数据,一组数据读取后,CSN 需要拉高,读取下一次数据时,CSN 需要再次拉低,效率较低,如图 16 所示。为了提高读取角度数据的效率,可以采用连读模式,如图 17 所示,发送一个读取 0x03 地址的命令,在 CSN 不拉高的情况下,会以 0x03/0x04/0x05 为单位循环读取数据。

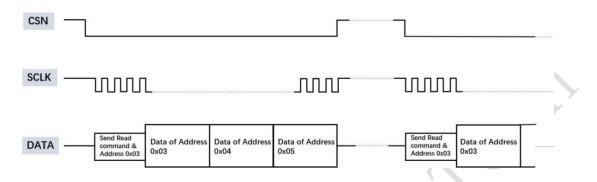


图 16: 三线 SPI 单次读取角度数据

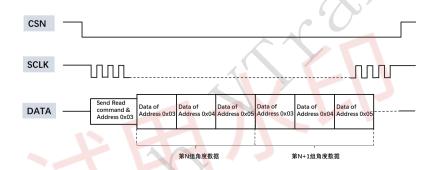


图 17: 三线 SPI 连续读取角度数据

11 / 18

9. 寄存器描述

Reg. Addr.	Reg Name	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	MTP
0x00	Chip Config				Chip ID					✓
0x03					ANGLE<17:1	0>				×
0x04	Data Read		ANGLE<9:2>					X		
0x05		ANG_RB	<1:0>	SMF^2	BTE ³		CRC⁵<3	:0>		×
0x40	User Config							IO_DS	SPI_3W	✓
0x41	User Config		PWM_FRE Q							✓
0x42	User Config			DIRECTION						✓
0x43	Harry Care Si						PPR ⁴ <11	1:8>		✓
0x44	User Config		PPR ⁴ <7:0>					✓		
0x46	Haan Confin						ZERO_POS	<11:8>		✓
0x47	User Config	ZERO_POS<7:0>					✓			
0x4A	User Config	2	Z_WIDTH<2:0>				✓			
0x4C	User Config			_	_		UVW_RES	<3:0>		✓

Note²: 低磁场预警,当出现低磁场预警时,SMF=1;

Note³: 高追踪误差预警;

Note4:每圈脉冲数;

Note⁵:角度 CRC 检测,CRC 生成器多项式 = X⁴+X+1,初始值 = 0000_B,数据输入、输出不取反。

9.1 Chip ID 寄存器(0x00<7:0>)

这个寄存器是芯片的身份识别寄存器,用户可以对此寄存器编写任意 8bit 数据。

地址	7	6	5	4	3	2	1	0
0x00	0	0	0	0	0	0	0	0

9.2 转动方向寄存器(0x42<5>)

寄存器 DIRECTION	转动方向
0	磁铁在芯片上方顺时针旋转 (B超前 A 1/4 周期),角度递增
1	磁铁在芯片上方逆时针旋转(B超前A1/4周期),角度递增

9.3 ABZ 模式 Z 信号宽度寄存器(0x4A<7:5>)

寄存器 Z_WIDTH <2:0>	宽度(LSBs 或度)	寄存器 Z_WIDTH <2:0>	宽度(LSBs 或度)
000	1	100	12
001	2	101	16
010	4	110	180°
011	8	111	1

9.4 零位寄存器(0x46<3:0>; 0x47<7:0>)

零角度位置	寄存器 ZERO_POS <11:0>		
-	12 位角度数据		

9.5 ABZ 模式分辨率配置寄存器(0x43 <3:0>;0x44<7:0>)

分辨率	寄存器 PPR⁴ <11:0>		
-	12 位分辨率配置		

9.6 UVW 模式极对数寄存器(0x4C<3:0>)

寄存器包含 UVW 换向输出的配置数据,可以设置为 1~16 之间任意对极。

UVW 极对数	寄存器: UVW_RES<3:0>	UVW 极对数	寄存器: UVW_RES<3:0>
1	0000	9	1000
2	0001	10	1001
3	0010	11	1010
4	0011	12	1011
5	0100	13	1100
6	0101	14	1101
7	0110	15	1110
8	0111	16	1111

9.7 PWM 模式寄存器(0x41<6>)

寄存器 PWM_FREQ	PWM 频率
0	971. 1Hz
1	485. 6Hz

9.8 IO 驱动配置寄存器 (0x40<1>)

寄存器 IO_DS	IO 驱动配置		
0	IO 驱动能力(spec 规定)		
1	IO 驱动能力增加 1 倍		

9.9 SPI 角度输出寄存器 (只读)

寄存器地址	Bit7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0x03		ANGLE <17:10>						
0x04		ANGLE <9:2>						
0x05	ANG_RI	B<1:0>	SMF^2	BTE ³		CRC ⁵ <3	3:0>	

10. 磁铁安装要求

推荐采用一对极的径向充磁的圆柱形磁铁与 VCE2755S 配合使用,磁铁中心与芯片中心对齐,磁铁距离芯片表面的距离尽量小以保证测量的高精度。安装时由于安装误差的存在,磁铁中心与芯片中心有一定偏移量,会导致测量结果产生一定的角度误差。尤其对于直径较小的磁铁而言,安装偏移引起的角度误差更显著。因此,在安装空间满足的前提下,推荐尽量选用直径较大的磁铁以降低安装偏移引起的角度误差。磁铁的安装如图 18 所示。

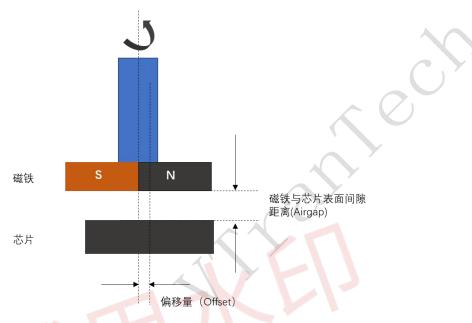
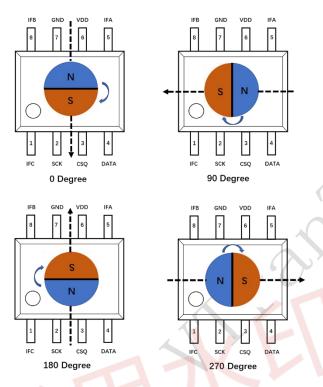


图 18: 磁铁安装示意图

本产品选用圆柱形磁铁,径向充磁,具有 N/S 一对磁极,参数如下表:


表 10. 外磁场参数

参数	描述	条件	最小值	典型值	最大值	单位
Airgap	间隙	磁铁距芯片表面的间距	_	_	3	mm
Offset	偏移量	磁铁中心距芯片中心的偏差	_	_	0.3	mm
D	磁铁直径	1 对极磁铁, 径向充磁	_	10	_	mm
t	磁铁厚度	_	_	2.5	_	mm
Н	工作磁场	芯片表面平行磁场	300	_	_	Gs

11. 机械角度和方向

磁铁安装于芯片正上方,磁铁中心与芯片中心对齐,顺时针旋转磁铁俯视图如图 **19**,逆时针旋转磁铁俯视图如图 **20**。

DIRECTION=0

图 19: 顺时针旋转磁铁时,磁铁和芯片机械角度、方向示意图(俯视图)

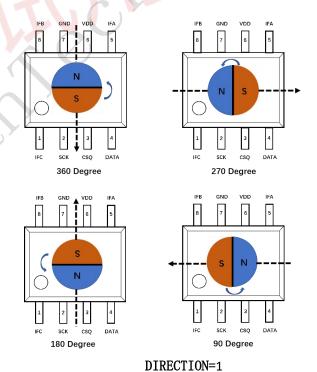


图 20: 逆时针旋转磁铁时,磁铁和芯片机械角度、方向示意图(俯视图)

12. 封装尺寸

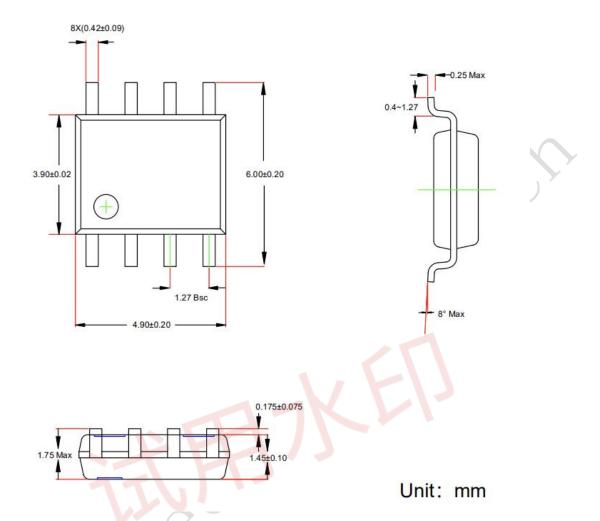


图 21: 封装与尺寸图